
JOURNEY TO THE WEBSUMMIT 

ONLINE MASTERCLASSES



#MicrosoftJWS



Agenda Overview
• Infrastructure Lifecycle

• Traditional

• Cloud Scale

• With Containers

Docker Orchestration Options
• Kubernetes

• Mesos

• Rancher

• Docker Swarm

Docker Swarm Deep Dive (Demo)
• Building an Azure template

• Virtual Machine Scale Sets

• Provisioning with cloud-init

• Scaling a Swarm cluster



Overview

Managing
containers

(literally) at scale



The Challenge



Traditional
Infrastructure
Lifecycle



Cloud
Infrastructure
Lifecycle

Horizontally (more VMs)

Automation

Cattle vs Pets



Container
Infrastructure
Lifecycle



Container
Management 
at Scale

Cluster

Deployment and 
Management

Scheduling and 
Automation

Service Discovery

Container 
placement / 

Resource 
management

Configuration 
Management

Container
Registry

Continuous 
Integration / 
Continuous 
Deployment

Monitoring and 
Logging



Container
Management 
at Scale:
Infrastructure

these two

Cluster

Deployment and 
Management

Scheduling and 
Automation

Service Discovery

Container 
placement / 

Resource 
management

Configuration 
Management

Container
Registry

Continuous 
Integration / 
Continuous 
Deployment

Monitoring and 
Logging



Orchestration



Container
Orchestration



Kubernetes Highlights
Master/worker nodes (with external etcd cluster)

Tries to be independent of networking layer

Integrated secret store, DNS server for service discovery

Very complex to set up (uses its own CLI and terminology)

Schedules pods (sets of containers), not single containers

Supports rolling updates, rollbacks and health checks



Kubernetes Update:

Now available on Azure Container Service!



Mesos 
DC/OS

(Marathon)

Highlights
Mesos is a large scale generic cluster management system

Marathon is a container scheduler that uses Mesos 

Features like load balancing, DNS and authentication are 

additional Mesos services

Also uses its own CLI, GUI and terminology

Supports scheduling and scheduling of container groups

Supports rolling and blue-green deployments, app catalogue

Available in Azure Container Service



Rancher
(Cattle)

Highlights
Built atop Docker core, simple to deploy and manage

Supports Kubernetes and Mesos as well as Cattle

Provides networking, service discovery, APIs

Cattle uses Docker Compose tooling and terminology

Cattle can schedule and scale “stacks” of containers

GUI for managing multiple environments, projects, access levels

Application catalogue, remote shell to containers in GUI



Docker
Swarm

Highlights
Now available out-of-the box

Built-in master consensus, networking, security…

CLI is an extension of docker

Basic scheduling (replicated/global services)

Rudimentary rolling updates (no rollbacks, very basic health 

checks)

Also available in Azure Container Service



Container
Orchestration
(the missing bits)

Aligning VM provisioning with container node provisioning

This is why we’re here today



Docker Swarm Background

and features



Timeline
(pre 1.12)

2015



Features
(1.12)



Feature
Coverage

Cluster

Deployment and 
Management

Scheduling and 
Automation

Service Discovery

Container 
placement / 

Resource 
management

Configuration 
Management

Container
Registry

Continuous 
Integration / 
Continuous 
Deployment

Monitoring and 
Logging



Instantiation cluster@master0:~$ swarm init

SWMTKN-1-2iefk4nlxpua1802wtf4dk…



So what just
happened?

The Docker daemon created:

• A memory-backed state store to keep track of swarm 

state

• An internal Certificate Authority to secure 

communications

• A manager service using the Raft protocol to turn the 

state store and the CA into a secure distributed system



But in real 
life…

• Create VM

• Install Docker

• Swarm init

• Get token

Deploy

master0

• Create VM

• Install Docker

• Apply token

Deploy

worker0

• Create VM

• Install Docker

• Apply token

Deploy

worker1

…and so

on…

Automation



Networking



Networking
(caveats)



Bundles



Let’s do it! • Provision Compute 
and Networking
resources using
ARM

• Deploy and
configure Docker
via cloud-init

• Automatic
Cluster Scaling
using Azure VM 
Scalesets



Building a 
scalable

Swarm cluster

Scale

Containers VMs

Deploy Applications

Swarm Visualizer Stateless App

Deploy Infrastructure

OS Docker Swarm

Cluster Template

Network Storage Compute Packages



Resource
Provisioning

Building our
infrastructure 22, 80, 81, 8080

80, 81



VM
Scale Sets



VM
Scale Sets
(autoscaling)



VM
Scale Sets
(provisioning)



Server 
Configuration

cloud-init
cloud-init.readthedocs.io



Preparing
CustomData

cloud-init

base64()

cluster-template

(Infrastructure)

parameters

(CustomData)

genparams

(packaging)

cluster.pub

(SSH Public Key)

cloud-config

(VM configurations)

az

(Azure CLI)



Launching our cluster Demo



What is
running now?

dockerd
(worker)

dockerd
(master)

master0 agent000000

agent-lbNSG

80 81 808022 80 81



Seeing what’s inside Demo



Deploying a 
visualizer



Deploying Services Demo



What is
running now?

dockerd
(worker)

dockerd
(master)

master0 agent000001

global

replicated replicated

replicated

agent000000

global

replicated

global

dockerd
(worker)



Scaling our cluster Demo



What is
running now?

server
systemd
+ curl

dockerd
(worker)

dockerd
(master)

master0 agent00000

/join/worker

/drain/$HOSTNAME

token



Agent
Lifecycle

VM allocated

Boot

[cloud-init]

Join Swarm

Shutdown

Requested

Drain and

Leave Swarm

VM stopped

[deallocated]



Resources

• https://github.com/rcarmo/azure-docker-swarm-cluster

• ARM template

• cloud-init scripts

• Deployment quickstart

• https://github.com/rcarmo/azure-toolbox

• The Linux environment used in the demo

• Complete Azure toolbox in a Docker container

Docker artwork by @laurelcomics

Now that class
is over…

https://github.com/rcarmo/azure-docker-swarm-cluster
https://github.com/rcarmo/azure-toolbox


Thank you!

Check out upcoming masterclasses at
http://aka.ms/jwsmasterclasses

http://aka.ms/jwsmasterclasses

